
NEUROSCIENCE

Evidence for a neural law of effect
Vivek R. Athalye,1,2* Fernando J. Santos,1* Jose M. Carmena,2,3,4†‡ Rui M. Costa1,5†‡

Thorndike’s law of effect states that actions that lead to reinforcements tend to
be repeated more often. Accordingly, neural activity patterns leading to reinforcement
are also reentered more frequently. Reinforcement relies on dopaminergic activity
in the ventral tegmental area (VTA), and animals shape their behavior to receive
dopaminergic stimulation. Seeking evidence for a neural law of effect, we found
that mice learn to reenter more frequently motor cortical activity patterns that
trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual
shaping of these patterns, with participating neurons progressively increasing and
aligning their covariance to that of the target pattern. Motor cortex patterns that
lead to phasic dopaminergic VTA activity are progressively reinforced and shaped,
suggesting a mechanism by which animals select and shape actions to reliably
achieve reinforcement.

A
ccording to Thorndike’s law of effect
(1), actions that lead to reinforcements
are repeatedmore frequently (2). Through
repeated attempts, actions are shaped
to more directly and reliably achieve re-

inforcement (3, 4), a process accompanied by
the refinement of behavior-specific neural en-
sembles and activity patterns in motor cortices
(5–9). Learning occurs because neural patterns
initiating actions that lead to reinforcement
are reentered more often, as supported by neu-
ral activity operant conditioning experiments
(10–15).
Reinforcement is thought to rely on the ac-

tivity of midbrain dopamine neurons. When
animals receive reward, dopamine neurons
in the ventral tegmental area (VTA) produce
a spike burst that encodes the difference be-
tween the animal’s expected and received re-
wards (16). This reward-prediction error signal
is useful for optimizing reward-seeking be-
havior (17, 18). Indeed, phasic VTA activity con-
stitutes a neural basis of reinforcement, as
animals shape their behavior to receive electrical
(19, 20) as well as optogenetic (21, 22) VTA
self-stimulation.
To test a neural law of effect, we investigated

if mice would learn to reenter specific motor
cortical patterns to receive dopaminergic VTA
self-stimulation (Fig. 1A). We recorded the ac-
tivity of tens of neurons in primary motor cortex
(M1) and used it to trigger optogenetic stim-

ulation of dopaminergic VTA neurons with
blue light (21). Tyrosine hydroxylase (TH)–Cre
mice (23) expressing channelrhodopsin-2 (ChR2
group, n = 10) in VTA dopaminergic cells were
implanted with an optic fiber in the VTA and
an electrode array in contralateral M1 layer 5
(Fig. 1B and fig. S1). To control for the effects
of viral expression and shining light in the
VTA, we expressed yellow fluorescent protein
(YFP group, n = 6) in Cre-positive mice that
underwent the same experimental procedure.
Mice were trained to control a brain-machine
interface (BMI) that transformed the activity
of groups of neurons in M1 into real-time
auditory feedback. When mice produced the
target neural activity pattern that led to the
target tone, they received a train of blue laser
pulses, providing phasic stimulation of do-
paminergic cells in the VTA. The self-stimulation
optogenetic protocol used here has been pre-
viously shown to reinforce lever pressing (fig. S2).
This closed-loop self-stimulation paradigm

(24) provides a principled way to study neural
reinforcement, as it assigns chosen recorded
neurons (“direct neurons”) to drive behavior,
defines the transform between neural activity
and behavior through the “decoder,” and de-
livers temporally precise reinforcement after
target neural activity is produced. Our decoder
received input from two arbitrarily selected M1
ensembles of two to four well-isolated single
units (see supplementary methods and fig. S3)
(14, 15). Two target neural population activity
patterns (targets 1 and 2) were specified, which
occur with equal frequency in spontaneous ac-
tivity: Target 1 required the simultaneous pos-
itive modulation of ensemble 1 and negative
modulation of ensemble 2, whereas target 2
required the reverse modulation (see supple-
mentary methods). The BMI provided opto-
genetic reinforcement of target 1 only, permitting
comparison of the two targets. Further, it pro-
vided continuous auditory feedback of neural
activity pattern exploration along the task-relevant
neural dimension—the differential modulation
of ensembles 1 and 2.

We sought to measure how neural reinforce-
ment changes the animals’ production of neural
activity patterns and resulting occupancy of
auditory tones. The initial conditions of learning
were established with decoder calibration to
set the baseline chance rate of neural activity
patterns occupying the tones. During a baseline
block preceding each BMI training block, calibra-
tion was used to estimate the distribution of
ensemble 1 and 2 modulations during spon-
taneous neural activity while mice freely moved
in the behavioral box without receiving auditory
feedback or VTA stimulation (Fig. 1C). Each unit’s
spiking activity was binned in 500-ms bins, and
an ensemble’s firing-ratemodulationwas defined
as the sum of each unit’s median-centered and
range-normalized spike count. For each individ-
ual ensemble, four modulation states were de-
fined by the 10th, 50th, and 90th percentile of
the modulation distribution from the baseline
block. The decoder calculated the difference be-
tween ensemble 1’s and ensemble 2’s modula-
tion state for each 500-ms cycle and mapped it
to one of seven auditory tones (ranging from 5 to
19 kHz). This daily calibration yielded a Gaussian-
like distribution over tones during baseline and
ensured that the chance rate of tone occupancy
did not change over training days, despite po-
tential day-to-day variability in neural recordings
(Fig. 1D). Animals had to produce substantial
ensemble modulations to achieve the targets
(Fig. 1E). During the BMI training block, neural
patterns close to target 1 decreased the tone,
whereas neural patterns close to target 2 increased
the tone (Fig. 1A). Target achievement resulted in
a 1-s playback of the target tone, and only target
1 achievement resulted in phasic VTA stimula-
tion 1.5 s after target hit, consisting of a 14-Hz
train delivered for 2 s (Fig. 1F).
We trained animals on four consecutive daily

sessions and quantified how reinforcement
changed BMI tone distributions relative to ses-
sion 1 (Fig. 2, A and B). Experimenters were
blind to the type of virus injected in the VTA.
ChR2 animals changed their target tone oc-
cupancy from their baseline bootstrap distribu-
tion by sessions 3 and 4, whereas YFP animals
showed no preference for target 1 (Fig. 2C). With
training, target 1 was occupied significantly more
often in ChR2 animals and did not change in
YFP animals (Fig. 2D). ChR2 animals increased
preference for target 1 versus target 2 (Fig. 2E)
and biased their overall distribution toward
low-pitch tones close to target 1 and away from
high-pitch tones close to target 2 (Fig. 2F). In-
terestingly, neuroprosthetic-triggered VTA stim-
ulation did not reinforce specific overt movements
(19, 20, 22) or place preference (21), suggesting that
animals are not simply undergoing motor learning
(fig. S4).
Given that the differential modulation between

ensembles 1 and 2 shifted toward target 1, we
asked more generally how the joint activity of
neurons involved in producing the pattern (direct
neurons) was shaped by reinforcement. Because
the ensembles’ simultaneous modulation triggered
reinforcement, VTA stimulation might strengthen
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Fig. 1. Closed-loop BMI paradigm for pairing specific motor cortex
activity patterns with phasic VTA dopaminergic activity. (A) Sche-
matic of the BMI paradigm. Each mouse receives a unilateral microwire
array implant in the motor cortex (targeted to layer V) and a
contralateral optical fiber implant in the VTA. Recorded single units are
arbitrarily assigned into two ensembles (E), and the concomitant
increase (up arrow) of one ensemble’s activity and decrease (down
arrow) in the other ensemble’s activity drives the decoder to change
the auditory tone produced every 500 ms. The rare, lowest-pitch
tone triggers phasic optical stimulation to the VTA, whereas the rare,
highest-pitch tone serves as a control. Solid triangles indicate neurons
with positively modulated firing rate; open triangles indicate neurons
with negatively modulated firing rate. Yellow color indicates the
center-pitch tone. FR, firing rate. (B) Coronal brain slice depicting
viral infection specific to the dopaminergic cells of the VTA. The
immunohistochemistry labels for tyrosine hydroxylase (TH, red) and the
Cre-dependent fluorescent protein (YFP, yellow) are shown. (C) BMI
decoder calibration. For every session (S) during the baseline period,

500 samples of 500-ms spike counts are collected from spontaneous
neural activity as the mouse freely behaves in the box with no task
or auditory tones. Each ensemble’s firing rate modulation is defined
as the sum of the member neurons’ normalized spike counts
(mean-centered, range-normalized) and then quantized into four
activation states. The decoder’s state is the difference between
ensemble 1’s and ensemble 2’s activation state and is mapped into
one of seven tones. The stars indicate target tones. (D) BMI calibration
on baseline period spontaneous neural activity results in a Gaussian-like
distribution over tones, such that target 1 (5 kHz) and target 2
(19 kHz) are rare. The mean and SEM baseline distribution for each
session is plotted on the left, averaged over all animals. Baseline
distributions show no change from session 1, as shown on the right.
(E) Ensemble 1 and 2 firing rate modulation before target 1 and target
2 hits, averaged over all recorded cells and sessions. (F) Task
schematic. Trial structure is the same for target 1 and target 2,
except that a target 1 hit results in phasic VTA stimulation (2-s train of
14 Hz pulses with 10-ms width). ITI, intertrial interval.
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Fig. 2. Target
pattern reen-
trance increases
during VTA
optogenetic
self-stimulation.
(A) Distribution of
the percent of
time that each
tonewas occupied
during baseline
(gray) and BMI
(cyan) blocks of
session 1 (left) and
session 4 (right) in
one mouse. (No
tones were actu-
ally played during
the baseline
block.) T1, target 1;
T2, target 2.
(B) Quantification
of the behavioral
changes between
sessions 1 and 4.
The session 4
occupancy gain
(cyan) is the ses-
sion 4 BMI
distribution nor-
malized to the
session 4 baseline
distribution, then
normalized to the
session 1 ratio. For
(B) to (F), the
95% confidence
interval for the
baseline
bootstrap
distribution is
plotted in gray
(see supplemen-
tary methods).To
generate the
bootstrap
distribution, the
BMI session was
simulated 10,000
times as though
neural activity
were drawn from
that session’s
baseline period.
(C) The occu-
pancy gain over
sessions 2
through 4. For (C) to (F),mean and SEMover ChR2 animals (n= 10) are shown
in cyan and over YFP animals (n = 6) are shown in black. By session 4, the
behavioral changes were statistically different across tones for ChR2 but not
YFP [repeated measures analysis of variance (ANOVA): ChR2, F6,48 = 3.46,
P = 6.4 × 10–3; YFP, F6,30 = 0.96, P = 0.47]. In session 4, 5 kHz (target 1)
was significantly different from all tones from 8 to 19 kHz (Tukey’s post hoc
multiple comparisons test). (D) Top: The occupancy gain for 5 kHz (target 1)
over sessions is shown. Middle: ChR2 (cyan) were significantly larger than
bootstrap from sessions 2 through 4 (session 2, P = 1.2 × 10–3; session 3,
P< 1× 10–5; session4,P< 1× 10–5). Bottom:YFP (black)were never significantly

larger than bootstrap. (E) Top: The preference gain for 5 kHz (target 1) versus
19 kHz (target 2) is plotted over sessions. Middle: ChR2 (cyan)were significantly
larger than bootstrap after session 1 (P < 1 × 10–5 for sessions 2 through 4).
Bottom:YFP (black) were never significantly larger than bootstrap. (F) Top:
The preference gain for low-pitch tones (5 to 8 kHz, close to target 1) versus
high-pitch tones (12 to 19 kHz, close to target 2) over sessions is shown. Middle:
ChR2 (cyan) were significantly larger than bootstrap after session 1 (P < 1 ×
10–5 for sessions 2 through 4). Bottom: YFP (black) were never significantly
larger than bootstrap. For (D) to (F), an asterisk indicates that the population
average is significantly larger than the baseline bootstrap distribution.
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shared inputs to direct neurons and thus increase
covariance over learning (13). We used factor
analysis (FA) to partition fine–time scale neural
variance arising from two sources: private inputs
to each cell, which drive independent firing

(private variance), and shared inputs, which drive
multiple cells simultaneously (shared variance).
Neural variance changes were not demanded by
our task, as subjects could use neural activity
drawn from any distribution to ultimately hit

target 1 (Fig. 3A). We analyzed fine–time scale
spike counts (100-ms bins) in a 3-s window pre-
ceding target hit (Fig. 3B). FA models popula-
tion spike counts x = m + xprivate + xshared as the
sum of a mean firing rate m; private variation
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Fig. 3. Learning correlates with an increase
in covariance of the neurons that produce
the target pattern. (A) The decoder maps
spike counts in 500-ms bins into quantizations
of (ensemble 1, ensemble 2) space. Neural
activity can take multiple routes to achieve
target 1. (B) Analysis of variance of spike
counts with 100-ms bins in a 3-s window
preceding target hit. “x” indicates a spike
count vector at one time point. (C) Factor
analysis was used to analyze the ratio of
shared variance to total variance (SOT),
which ranges from 0 to 1, for the full
population controlling the BMI. A two-neuron
illustration shows a neural solution with
SOT = 0, 0.6, and 1. (D) Correlation of
change in shared variance before target
1 hit (neural covariance gain) with change
in preference for target 1 over target
2 (learning), over sessions 2, 3, and 4. ChR2
animals (left) showed a significant
correlation [ChR2 S4: correlation coefficient
(r) = 0.86, P = 6.1 × 10–3; ChR2 pool S3, S4:
r = 0.71, P = 1.0 × 10–3; ChR2 pool S2, S3, S4:
r = 0.62, P = 9.8 × 10–4; ChR2 S3: r = 0.60,
P = 6.5 × 10–2; ChR2 S2: r = 0.62, P = 1.3
× 10–1], whereas YFP animals (right)
showed no correlation (YFP pool S2, S3,
S4: r = –0.14, n.s. P = 6.4 × 10–1; YFP
S4: r = –0.32, P = 6.0 × 10–1; YFP S3:
r = –0.69, P = 5.1 × 10–1; YFP S2: r = 0.37,
P = 5.4 × 10–1). n.s., not significant.
(E) SOT of direct and indirect neurons over
sessions for ChR2 learners (left, n = 5),
ChR2 poor learners (middle, n = 5), and YFP
subjects (right, n = 5). ChR2 learners individually
showed significant preference gain for target
1 versus target 2 in both sessions 3 and 4.
ChR2 poor learners constitute the remaining
animals who as a population showed significant
target 1 occupancy gain on sessions 3 and 4. For
direct neurons, ChR2 animals’ and ChR2
learners’ SOT increased from early (sessions
1 and 2 pooled) to late training (sessions 3 and
4 pooled), whereas ChR2 poor learners and YFP
did not (one-sided rank sum test; ChR2, early <
late, P = 1.7 × 10–2; ChR2 learners, early < late,
P = 1.6 × 10–2; ChR2 poor learners, early < late,
n.s. P = 2.1 × 10–1; YFP, early < late, n.s. P = 8.3
× 10–1). For indirect neurons, SOT showed no
change for all groups (ChR2 learners: early <
late, n.s. P = 4.3 × 10–1; ChR poor learners,
early < late, n.s. P = 2.7 × 10–1; YFP, early < late,
n.s. P = 7.1 × 10–1). Traces in the insets show the
average of each animal’s SOT in sessions 1 and
2 (early) versus the average of sessions 3 and
4 (late). Error bars indicate mean ± SEM. The
asterisk indicates that the population average
is significantly larger than the baseline
bootstrap distribution.
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xprivate, which is uncorrelated across neurons;
and shared variation xshared = Uz, which is driv-
en by latent shared inputs z through the linear
factorsU. Because xprivate and xshared are indepen-
dent, the total covariance matrix Stotal = Sprivate +
Sshared is decomposed into the sum of a diagonal
private covariance matrix Sprivate and a low-rank
shared covariance matrix Sshared. Geometrically,
private variance spans all of the high-dimensional
population activity space for which each neuron’s
activity is one dimension, whereas shared vari-
ance is constrained to a low-dimensional “shared
space” because there are fewer shared inputs
than neurons. The number of shared dimensions
was fit by using standard model selection (fig. S5)
by maximizing cross-validated log likelihood
(13, 25–28).
We assessed neural coordination with a co-

variance index defined as the ratio of the shared
variance to total variance averaged over neurons
(SOT) (Fig. 3C). Although Fig. 3, A to C, uses two
neurons for illustration, we emphasize that FA
was applied to the joint activity of all neurons
used to control the BMI (ranging from four to
eight). We then asked if learning, defined as
the proportion of hits of target 1 versus target 2
normalized to session 1, was correlated with the
increase in covariance, defined as the SOT nor-
malized to session 1. The increase in covariance
correlated with learning in ChR2, but not YFP,
animals (Fig. 3D). This correlation became stronger
as learning progressed.
These data suggest that the degree of learning

related to the degree of neural variance changes.
To further dissect this, we analyzed ChR2 ani-
mals and found two groups distinguished by
their degree of learning (fig. S6). Each individ-
ual of the learner group (n = 5) showed statis-
tically significant preference for target 1 versus
target 2 for both sessions 3 and 4. The poor
learner group (n = 5), as a population, showed
an increase in target 1 occupancy but did not im-
prove preference for target 1 over target 2 (fig. S6).

Learners significantly increased their covariance
index over training, whereas poor learners and
YFP did not (Fig. 3E and figs. S7 and S8A). This
effect was ensemble specific, as only neurons
controlling the BMI (direct neurons) increased
their covariance index, whereas other recorded
neurons (indirect neurons) did not (Fig. 3E and
figs. S9 and S10).
Finally, we asked whether dopaminergic

self-stimulation shaped the neural covariance
to more easily achieve the target pattern. Only
neural variance that causes differential mod-
ulation between ensembles 1 and 2 can change
the feedback tone and contribute to target
achievement, corresponding to variance that
is aligned with the decoder’s “ensemble 1 minus
ensemble 2” axis (Fig. 4A). We analyzed the
relationship between shared neural variance
and the decoder by calculating the angle be-
tween the shared space and the decoder axis.
The angle between the shared space and the
decoder axis decreased significantly for learn-
ers but not for poor learners and YFP (Fig. 4B
and fig. S8B).
The results presented here show that mice

reenter specific neural patterns that trigger do-
paminergic VTA self-stimulation more often as
training progresses. Dopaminergic self-stimulation
not only increases the reentry of a target pattern,
which may have been strongly predicted on the
basis of previous studies, but further shapes the
distribution of activity patterns to more directly
achieve the target pattern. The covariance in-
creased specifically between direct neurons and
gradually became aligned with the decoder. In-
dividual neuron firing properties did not corre-
late with learning (fig. S11), highlighting that it
was the specific pattern that was reinforced. This
reinforcement of specific neural ensembles and
activity patterns extends recent work showing
individual neuron conditioning through elec-
trical self-stimulation of the nucleus accumbens
(29). Although it may be difficult to completely

rule out that very subtle movements that lead
to the desired patterns of activity are being
reinforced, we showed that, in this paradigm,
there is no reinforcement of overt movements
over BMI learning (fig. S4). Still, these results
may have implications for motor reinforcement,
in which actions are selected more often and
optimized over iterations to more directly achieve
reinforcements.
In these experiments, subjects learned to pro-

duce neural patterns de novo, which leverages
different mechanisms from BMI learning exper-
iments in which subjects adapted to decoder
perturbations. BMI-experienced subjects learn
to control a decoder by selecting activity patterns
from their existing shared space (28). By contrast,
our learners initially exhibit little shared variance,
and this shared variance is misaligned with the
decoder. Thus, they likely select patterns from
their high-dimensional private variance, grad-
ually developing and realigning shared variance
with learning (13). Analysis and modeling indi-
cate that private variance is useful for broad ex-
ploration of population activity space (13) and for
learning each neuron’s contributions to achieving
a goal (30, 31), possibly permitting the selective
increase of direct neurons’ covariation index over
indirect neurons. The difference between learn-
ers and poor learners could depend on the prob-
ability of the direct neurons receiving common
anatomical input, or on the plasticity of common
inputs to the direct neurons.
It is unlikely that VTA stimulation directly

modulated activity and plasticity in M1 through
monosynaptic projections because we stimulated
the VTA contralateral to our M1 recordings, and
most projections are unilateral. Indeed, VTA
stimulation did not induce any observable changes
in the mean firing rates of M1 neurons (fig. S12).
Thus, M1 reinforcement is likely driven by inputs
from and plasticity in broader networks, such as
cortico-basal ganglia circuits. Cortico-striatal plas-
ticity is modulated by dopamine (32, 33) and is
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necessary for motor and neuroprosthetic learning
(5, 14, 34). Actor-critic reinforcement learning
models (35, 36) suggest two sites for VTA-
modulated plasticity: the dorsal striatum (actor),
which contributes to selection of actions (M1
neural activity patterns), and the ventral striatum
(critic), which may evaluate actions on the basis
of the value of the environmental states reached
(auditory feedback). Plasticity in dorsal striatum
could be mediated by glutamatergic input from
contralateral M1 and dopaminergic input signal-
ing reward from the VTA (37), enabling adaptation
of the policy for reentering M1 activity patterns.
Plasticity in ventral striatum (32) could be me-
diated by strong bidirectional connections with
the VTA, enabling adaptation of the auditory
tones’ value.
In addition, VTA stimulation may have in-

directly guidedmotor cortical plasticity. As animals
acquire motor skills and consolidate cortical ac-
tivity patterns, motor memories are encoded in
the formation of lasting dendritic spine ensem-
bles (8, 38–40). Further, reinforcement guides the
reactivation of neurons during sleep (41), leading
to the formation of dendritic spines (42) as well
as the identification of neurons responsible for
achieving a target pattern (41). Thus, our ob-
served changes in shared variance could also
reflect sleep-dependent changes in motor corti-
cal synaptic connectivity. Recent modeling work
shows that excitation-inhibition–balanced spiking
networks with clustered connectivity exhibited
prominent low-dimensional shared variance,
whereas nonclustered networks exhibited weak,
high-dimensional shared variance (43).
Our results provide causal evidence for a neu-

ral law of effect, describing how the brain selects
and shapes neural activity patterns through neu-
ral reinforcement. As Skinner noted, selection by
consequence is a mechanism driving the evolu-
tion of living things, from species to societies
to behavior (44). Our results help uncover how

selection by consequence operates on neural ac-
tivity in the brain (45).
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